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Abstract 21 

Recent climate variability and anomaly in the Great Lakes region provided a valuable 22 

opportunity in examining the response and regulation of ecosystem carbon cycling across 23 

different ecosystems. A simple Bayesian hierarchical model was developed and fitted against 24 

three-year (2011–2013) net ecosystem CO2 exchange (FCO2) data observed at three eddy-25 

covariance sites (i.e., a deciduous woodland, a cropland, and a marsh) in northwestern Ohio. The 26 

model was designed to partition the variation of gross ecosystem production (GEP), ecosystem 27 

respiration (ER) and FCO2 that resulted directly from the short-term environmental forcing (i.e., 28 

direct effect) and indirectly from the changes of ecosystem functional traits (e.g., structural, 29 

physiological, and phenological traits) (i.e., indirect effect). Interannual variation of FCO2 was 30 

mainly driven by indirect effects, accounting for 54%, 89%, and 86% of the interannual variation 31 

at the woodland, cropland, and marsh sites, respectively. On the other hand, direct climatic 32 

effects accounted for 33% of interannual FCO2 variation at the woodland site and became 33 

irrelevant (<10%) at the cropland and marsh sites. In general, annual GEP and ER at each site 34 

tended to co-vary and dampen the interannual variability in FCO2. Yet, year-to-year changes of 35 

GEP and ER were not spatially synchronous, suggesting that the ecosystem’s response to climate 36 

was strongly site-specific in terms of the annual net CO2 uptake. Future research should focus on 37 

the disparate response among ecosystems and develop a suitable framework to examine the 38 

mechanisms that drive differences in closely co-located ecosystems.  39 
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Highlights 40 

1. Indirect effects drive the majority of interannual variability in CO2 fluxes 41 

2. Annual GEP and ER co-vary and dampen the variability in annual CO2 uptake 42 

3. CO2 fluxes respond differently to similar climate conditions in co-located ecosystems 43 

 44 
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1. Introduction 47 

Net ecosystem CO2 exchange (FCO2), which is the balance of two large and opposite carbon 48 

fluxes—gross ecosystem production (GEP) and ecosystem respiration (ER)—has been studied 49 

across a range of spatial and temporal scales in recent decades to understand how climatic 50 

variability and disturbance regulate the regional-to-global carbon balance (Baldocchi, 2014; 51 

Braswell et al., 1997; Melillo et al., 2014; Yi et al., 2010). Environmental drivers, such as solar 52 

radiation, temperature, and air/soil moisture, are generally accepted as the major factors 53 

regulating the variation of CO2 fluxes (i.e., FCO2, GEP, ER) at the hourly to synoptic (multi-daily) 54 

scales (Baldocchi et al., 2001; Baldocchi, 2008; Stoy et al., 2005). On the other hand, the 55 

response of CO2 fluxes to climatic variability becomes more complex at a longer scale (e.g., 56 

seasonal to interannual) and often involves indirect effects (i.e., prolonged, muted, and lagged 57 

responses) through altering the biotic characteristics (Barr et al., 2009; Humphreys and Lafleur, 58 

2011; Richardson et al., 2010; Stoy et al., 2005). The interaction of direct and indirect effects is 59 

of great importance because the similarity or difference in their response magnitudes/directions 60 

to climatic variability may reveal the potential resilience or vulnerability of ecosystem carbon 61 

cycling to prospective climate change (Cox et al., 2000; Heimann and Reichstein, 2008; Luo et 62 

al., 2009).  63 

Different statistical frameworks, such as the homogeneity-of-slopes model (e.g., Hui et 64 

al., 2003; McVeigh et al., 2014; Polley et al., 2008; Teklemariam et al., 2010) and the cross-year 65 

model simulation (e.g., Richardson et al., 2007; Shao et al., 2014; Wu et al., 2012), have been 66 

adopted to disentangle the direct/indirect effects. In general, these approaches took advantage of 67 

our current understanding of environmental forcing on the short-term variability of CO2 fluxes. 68 

They structured the statistical models explicitly to incorporate all relevant short-term 69 
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environmental drivers (e.g., radiation, temperature, moisture) and allowed the model parameters 70 

to vary across a longer time span (e.g., yearly, in most cases). Once the models were fitted, the 71 

variation of CO2 fluxes (e.g., among years) was then partitioned into the effects of environmental 72 

drivers (i.e., direct effect) and model parameters (i.e., indirect effect). The changes of model 73 

parameters were interpreted as “functional changes” (Hui et al., 2003), which comprised of all 74 

effects that were unexplained by direct and instantaneous environmental forcing.  75 

Potentially, the functional changes may result from the changes of plant phenology 76 

(Richardson et al., 2009; Richardson et al., 2010), physiological characteristics (Luo et al., 2001; 77 

Sala et al., 2010), canopy structure (Barr et al., 2004; Humphreys and Lafleur, 2011), soil 78 

microbial community (Sowerby et al., 2005), substrate availability (DeForest et al., 2009), or the 79 

interplay of autotrophic and heterotrophic respiration (DeForest et al., 2006; Xu et al., 2011). 80 

Studies showed that the indirect effects often played a dominant role in driving interannual FCO2 81 

variability (Shao et al., 2015). In some cases, the indirect effects explained up to ~70–80% of the 82 

interannual variability of CO2 fluxes (Shao et al., 2014; Wu et al., 2012). However, prior studies 83 

have not been applied to a collection of co-located sites experiencing a set of extreme climate 84 

anomalies, where the expectation would be similar responses given similar climate mean state 85 

and geographic distance. 86 

Recent research also highlighted the importance of rare but extreme weather events (e.g., 87 

heat/cold wave, rain storm, severe drought) for their disproportional influence on ecosystem 88 

carbon cycling (Ciais et al., 2005; Shi et al., 2014; Wu et al., 2012; Xiao et al., 2010). Climatic 89 

anomalies and extremes posed instantaneous effects on ecosystem carbon cycling by altering 90 

environmental conditions (i.e., temperature, moisture). More importantly, these events may alter 91 

the phenological, physiological, and structural traits of ecosystems, which then translate into 92 
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indirect effects that last much longer than the duration of climatic anomalies and extremes (Ciais 93 

et al., 2005; Teklemariam et al., 2010; Thibault and Brown, 2008). These prolonged or lagged 94 

effects often resulted in more influence on carbon cycling than the short-term direct effects 95 

(Ciais et al., 2005; Desai, 2014; Thibault and Brown, 2008).  96 

Most recently, severe weather and climate anomalies have been increasingly observed in 97 

United States (Karl et al., 2012; Wuebbles et al., 2014). In the Great Lakes region, the recent 98 

records included the earliest false spring of the century (2012), heat waves (2011, 2012), summer 99 

cool spells (2013), and record-breaking high precipitation (2011) (Ault et al., 2013; Chu et al., 100 

2015; Karl et al., 2012). These anomalies triggered drastic year-to-year variation in plant 101 

phenology across the region and caused severe damages to crop and fruit production (Ault et al., 102 

2013; Knudson, 2012). Our previous study found that a Lake Erie coastal marsh turned from a 103 

net carbon sink to a net carbon source recently in the past years (Chu et al., 2015). However, it 104 

remains unclear whether the influence was ecosystem-specific or region-wide, and to what extent 105 

the influence was caused by direct and indirect effects.   106 

Here, we aimed to examine and compare the effects of recent climatic variability and 107 

anomalies on interannual variability of CO2 fluxes at different ecosystems in the region. 108 

Specifically, we targeted the two largest carbon fluxes (GEP and ER) and their balance—FCO2. 109 

We asked the following questions. (1) Do spatially co-located but functionally different 110 

ecosystems respond similarly in magnitude and direction to climate variability and anomalies in 111 

terms of CO2 fluxes? (2) What biophysical factors most influence how ecosystem CO2 fluxes 112 

(GEP, ER, and FCO2) respond to recent climate variability and anomalies? (3) To what extent can 113 

the response of GEP, ER, and FCO2 be explained by the direct and indirect effects at different 114 

ecosystems, respectively? Specifically, do these direct and indirect effects function 115 
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synergistically (++) or antagonistically (+−) to the climate variability and anomalies? 116 

 117 

2. Materials and Methods 118 

2.1. Experiment Design 119 

We adopted a similar cross-year model simulation approach as in Richardson et al. (2007) and 120 

Wu et al. (2012). We targeted the three most prevalent ecosystem types (i.e., agriculture, forest, 121 

and wetland) in the study region—northwestern Ohio, USA. A Bayesian hierarchical model was 122 

developed and the model parameters were estimated using the Markov Chain Monte Carlo 123 

(MCMC) technique. The models were fitted against three-year (2011–2013) FCO2 data observed 124 

at three eddy-covariance sites in the region (Table 1).  125 

We designed the model to incorporate the most relevant short-term (hourly-synoptic) 126 

environmental forcing on GEP and ER (i.e., solar radiation, temperature, air/soil moisture) and 127 

allowed model parameters to vary through the seasons and over years. Once the models were 128 

fitted, we ran a series of Monte Carlo simulations (N=1,000) at each half-hourly time step 129 

through a yearly time span (17520 steps) by using model parameters from each year (2011–130 

2013) with environmental drivers from each year (2011–2013). The cross-year simulation 131 

generated nine different scenarios of the parameter-driver combinations (e.g., 2011 driver × 2011 132 

parameter, 2011 driver × 2012 parameter…). The simulated half-hourly GEP, ER, and FCO2 were 133 

then integrated locally (i.e., every eight days) and annually.  134 

Following Richardson et al. (2007), we adopted analysis of variance (ANOVA) to 135 

partition the variation of local and annual integrals from the nine different simulation scenarios 136 

into the effects of parameter years (i.e., indirect effect), driver years (i.e., direct effect), their 137 

interactions (if significant), and residual errors. Instead of hypothesis testing, we adopted 138 
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ANOVA in order to interpret to what extent the simulated interannual GEP/ER/FCO2 variability 139 

resulted from the instantaneous/direct response to the short-term environmental forcing. On the 140 

other hand, interannual variability resulting from the varying parameters over the years was 141 

interpreted as the lagged/prolonged response from altering the phenological, structural, or 142 

physiological traits of ecosystems. Herein, we treated the nine scenario’s composite average as a 143 

conceptual baseline while presenting interannual variation of simulated GEP, ER and FCO2. 144 

Unless specified, we always reported parameter estimations and simulations in terms of medians 145 

along with 95% quantile intervals (2.5%, 97.5%) in the following sections. 146 

 147 

Table 1. Summary of the site location and vegetation types in the study. 

Site Oak Openings Preserve 

(US-Oho) 

Curtice Walter-Berger 

Cropland (US-CRT) 

Winous Point North 

Marsh (US-WPT) 

Location N41°33′16.98″ 

W83°50′36.76″ 

N41°37′42.31″ 

W83°20′43.18″ 

N41°27′51.28″ 

W82°59′45.02″ 

Vegetation type Deciduous broadleaf 

forest (~70-year) 

Conventional rain-fed 

cropland 

Freshwater coastal marsh 

Dominant species Quercus rubra,  

Q. alba, Q. velutina, 

Acer rubrum 

Glycine max,  

Triticum spp. 

Nymphaea odorata, 

Nelumbo lutea,  

Typha angustifolia, 

Hibiscus moscheutos 

Soil type Sandy mixed and mesic Silty clay Hydric 

Groundwater level 0.3–3 m belowground 0.3–3 m belowground 0.2–1 m aboveground 

Soil water content 17–25% 25–65% Saturated 

Reference Noormets et al. (2008b) 

Xie et al. (2014) 

Chu et al. (2014) Chu et al. (2014) 

Chu et al. (2015) 

   148 
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2.2. Site and Date Description 149 

The three flux tower sites, which include a 70-year-old deciduous woodland in the Oak Openings 150 

Preserve (AmeriFlux: US-Oho), a freshwater marsh at the Winous Point Marsh Conservancy 151 

(US-WPT), and a conventional cropland (US-CRT) are located 30–50 km apart in northwestern 152 

Ohio (Table 1). The climate conditions are similar at the three sites with a long-term regional 153 

mean air temperature of ~10.0 °C and annual precipitation of ~897 mm (Chu et al., 2014). The 154 

mixed woodland is dominated by red oak (Quercus rubra), white oak (Q. alba), black oak (Q. 155 

velutina), and red maple (Acer rubrum). The freshwater marsh is permanently inundated and 156 

covered with a mix of narrow-leaved cattail (Typha angustifolia) and water lily (Nymphaea 157 

odorata) interspersed with areas of open water. The cropland site is rain-fed and no irrigation is 158 

applied. The cultivation practices include minimum tillage and both insect and weed control. 159 

During the three year study period, the cropland was planted with soybean (Glycine max) in 2011 160 

(DOY 162–296) and 2012 (DOY 141–275). Winter wheat (Triticum spp.) was planted after the 161 

soybean harvest in 2012 and was harvested on DOY 197 in 2013. Detailed site information can 162 

be found in Chu et al. (2014; 2015), Noormets et al. (2008b), and Xie et al. (2014). 163 

Micrometeorological variables were measured at all the sites, including 164 

photosynthetically active radiation (PAR), air temperature (Ta), vapor pressure deficit (VPD), 165 

precipitation (PP), soil temperature (Tg), groundwater level, and volumetric soil water content 166 

(VWC). Regional long-term meteorological data (i.e., Ta and PP) were obtained through the 167 

National Climatic Data Center of the National Oceanic and Atmospheric Administration, USA. 168 

The three-year (2011–2013) regional climate was summarized as being extremely warm in 2012 169 

and having high precipitation in 2011 (Fig. A.1) (Chu et al., 2015). Additionally, there were 170 

several warm spells in 2011 and 2012 and cool spells in the summer of 2013. 171 
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The eddy covariance method was applied to quantify FCO2 at all the sites following the 172 

same workflow described in Chu et al. (2014). In total, 42%, 73% and 61% of FCO2 passed the 173 

quality control checks at the woodland, marsh, and cropland sites, respectively. The quality-174 

controlled and non-gap-filled FCO2 was used for further model parameterization. In addition, we 175 

applied the marginal distribution sampling (MDS) method to fill the FCO2 gaps (Reichstein et al., 176 

2005). The MDS method was selected for its consistently good gap-filling performance across 177 

sites (Moffat et al., 2007; Papale et al., 2006). Thus, we adopted the MDS-filled annual FCO2 as a 178 

reference estimate in comparison with those from the model simulations. Details of the gap-179 

filling procedures and uncertainty estimations can be found in our previous study (Chu et al., 180 

2014).  181 

We adopted enhanced vegetation index (EVI) as a land surface vegetation index to 182 

provide information of seasonal vegetation dynamics (e.g., canopy coverage, greenness, and 183 

biomass) (Morisette et al., 2008). Eight-day EVI was calculated from the reflectance 184 

(MOD09A1) of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument from 185 

the Land Process Distributed Active Archive Center, US Geological Survey, USA. The target 186 

spatial coverage was 500×500 m2 at the marsh and cropland sites and 2,500×2,500 m2 at the 187 

woodland site, respectively. 188 

 189 

2.3. Model Description  190 

The FCO2 was modeled at the half-hourly time step. We assumed FCO2 followed a distribution, 191 

where the mean (μFCO2) can be modeled as the difference of GEP and ER. The standard deviation 192 

(σFCO2) can be modeled as a function of PAR to incorporate the heteroscedasticicity (Richardson 193 

et al., 2006), where w1 and w2 were the empirical coefficients: 194 



11 

 

���� ~ �(	
���, �
���� )        (1) 195 

	
��� = �� − �(��� − 10) ∙ ���;  �(�) = �0, � ≤ 0
1, � > 0    (2) 196 

�
��� = �� + �� ∙ ���; �!  ~ �(	"! , �"!� )      (3) 197 

where the step function I(x) was used for discriminating the daytime/nighttime data (PAR>10 198 

μmol m−2 s−1 for daytime) such that the model could be estimated by using the daytime and 199 

nighttime data together. Positive FCO2 indicated a net flux from the ecosystem to the atmosphere. 200 

GEP and ER were both set to be positive.  201 

The Arrhenius equation (Lloyd and Taylor, 1994) and Michaelis-Menten light response 202 

equation (Falge et al., 2001) were adopted as the basic models for ER and GEP, respectively. In 203 

addition, two exponential decaying functions were introduced to account for VPD limitation on 204 

GEP and VWC limitation on ER (Lasslop et al., 2010; Noormets et al., 2008a): 205 

�� = �#$% ∙ exp )�* + �
,-./0,1

− �
,20,1

34 ∙ 5(678)     (4) 206 

��� = �9:; ∙ < =>?
=>?@AB

C ∙ 5(6�D)       (5) 207 

5(678) = E 1, 678∗ ≥ 678*
expH−IJK�(678* − 678∗)L, 678∗ < 678*

   (6) 208 

5(6�D) = E 1, 6�D∗ ≤ 6�D*
expH−IJ=N(6�D∗ − 6�D*)L, 6�D∗ > 6�D*

    (7) 209 

where VPD* and VWC* were the normalized VPD (0–1) and VWC (0–1) against the observed 210 

full ranges. Rref (	mol CO2 m–2 s–1) was the base respiration at the reference temperature (Tref, set 211 

as 10°C), E0 (°C) was the temperature sensitivity, T0 was set to be −46.02°C, Amax (μmol CO2 m–
212 

2 s–1) was the maximum ecosystem CO2 uptake rate at light saturation, and Km (μmol quanta m–2 213 

s–1) was the half-saturation quantum flux level of the GEP light response curve. kVPD and kVWC 214 

represented the sensitivities for VPD and VWC limitation whereas VPD0 and VWC0 were the 215 
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thresholds for VPD and VWC limitation.  216 

In the preliminary tests, we found that certain parameters (e.g., Amax-Km-kVPD-VPD0) 217 

tended to co-vary. If all these parameters were allowed to vary through the time series without 218 

proper constraints, model parameterization either did not converge or led to unreasonable 219 

estimations when it did. Thus, we reduced the model structures based on current knowledge 220 

about these parameters’ temporal characteristics and set different parameters to vary at specific 221 

time steps (Appendix A) (Bloom and Williams, 2015; Shao et al., 2014). Rref and Amax were 222 

allowed to vary every day within each year and among years while the rest (e.g., E0, Km…) were 223 

set to only vary among years (i.e., yearly parameter). Furthermore, we adopted the phenology 224 

model in Gu et al. (2009) to describe the seasonal dynamics of Rref and Amax, where Rref and Amax 225 

at each daily step were modeled as functions of the day of year (DOY) (i.e., μAmax(t), μRref(t)). 226 

Additionally, the standard deviations (i.e., σAmax, σRref) were introduced so that Rref and Amax can 227 

be fine-tuned at each daily step to mimic the multi-day variation that superimposed the 228 

seasonality: 229 

�#$%(O) ~ �(	?#$%(O), �?#$%� )        (8) 230 

�9:;(O) ~ �(	>9:;(O), �>9:;� )       (9) 231 

μ;(O) = y*.; + :S.T
U�@VWX<0YZ[S.T

\S.T C]^S.T − :_.T
U�@VWX<0YZ[_.T

\_.T C]^_.T    (10) 232 

where t represented the DOY, the first term (y0) on the right hand side of Eq. (10) represented the 233 

baseline Rref or Amax of the year and the second and third terms reflected the spring development 234 

and fall recession phases of Rref or Amax. y0, a1, a2, b1, b2, c1, c2, t1, and t2 were empirical 235 

parameters that were associated with either the full ranges of Rref or Amax (y0, a1, a2) or the 236 

duration/timing of the transition periods (b1, b2, c1, c2, t1, t2). Once the models were fitted, a 237 

series of ensemble phenological characteristics, such as the annual assimilation/respiration 238 
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potentials (i.e., annual integrals), active and peak assimilation/respiration periods, can be 239 

calculated from the model coefficients (Table A.1; Appendix A) (Gu et al., 2009). While fitting 240 

the models, we set all the empirical parameters in Eq. (10) to vary among years in representing 241 

the interannual variation. 242 

In our preliminary tests, we also found that the yearly estimates of kVWC, VWC0, kVPD, 243 

and VPD0 were similar among years. Thus, we further reduced the model structures by treating 244 

them as universal parameters (i.e., one set of parameters for three years) similar to other previous 245 

studies (e.g., Richardson et al., 2007; Shao et al., 2014). For each yearly parameter, we assumed 246 

that the parameters were linked among years (i.e., exchangeability) and the linkage could be 247 

described by a higher level distribution (i.e., hierarchical model):   248 

àb  ~ �c	da , �da� e; àb ∈ ghda , idaj       (11) 249 

where θjl was a yearly estimate of parameter θj (e.g., E0, Km, y0, a1, a2, b1, b2…) at the year l 250 

(2011–2013), μθj and σθj were the mean and standard deviation of the higher level distribution 251 

from which θjl was drawn (i.e., hyper parameters). A uniform prior was adopted for each hyper 252 

parameter (i.e., μθj, σθj) bounded within an acceptable range based on literature survey (Table 2; 253 

Table A.2; Table A.3; Table A.4) (Zobitz et al., 2011). Also, each yearly parameter was 254 

constrained by the lower (Lθj) and upper (Uθj) bounds.  255 

While fitting the model, we estimated all the parameters in Eqs. (1)–(11) together with 256 

the entire three-year dataset. For the cropland site, the winter-spring wheat cover at the cropland 257 

had two higher assimilation periods (October–November 2012 and May–June 2013) that were 258 

separated by the snow-covered period in winter. Thus, an additional set of model parameters was 259 

introduced specifically for this winter-wheat period (September–December 2012) in order to 260 

adequately capture the bimodal seasonality of Amax in 2012.  261 
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The GEP and ER models are admittedly semi-empirical. However, as the models were 262 

fine-tuned to incorporate the major short-term environmental drivers (e.g., PAR/VPD on GEP, 263 

Ta/VWC on ER) of these ecosystems (Chu et al., 2014; Noormets et al., 2008b; Ouyang et al., 264 

2014), the Amax and Rref represented the potential GEP and baseline ER after eliminating the 265 

short-term dynamics of environmental forcing. We did not use site-specific management factors 266 

(e.g., agricultural practice at the cropland, groundwater level at the marsh) in order to keep the 267 

model structures and thus variance partition comparable among sites. Herein, these parameters 268 

were interpreted as estimates of ecosystem functional traits that were associated with GEP and 269 

ER (i.e., functional parameter) (Wu et al., 2012). For example, Amax was addressed to be often 270 

associated with ecosystem structural (e.g., leaf area index) and physiological (e.g., leaf 271 

photosynthesis capacity, nitrogen content) characteristics (Cook et al., 2004; Ollinger et al., 272 

2008). Rref was often associated with the substrate quality/quantity and microbial 273 

composition/activity (Carbone et al., 2008; Cook et al., 2004; Jarvis et al., 2007).  274 

 275 

2.4. Model Parameterization and Model Error Assessment 276 

All statistical tests and model estimations were conducted in the R platform (R Development 277 

Core Team, 2014, version 3.1.1). Bayesian hierarchical models were carried out using the JAGS 278 

software (Just Another Gibbs Sampler, version 3.4.0) (Plummer, 2003), which was activated 279 

through the “rjags” package. The “dclone” and “snow” packages were used for parallel 280 

computation of six chains starting randomly within the prior ranges (Solymos, 2010; Tierney et 281 

al., 2009). The Gelman-Rubin convergence was checked by using the “coda” package (Brooks 282 

and Gelman, 1998; Plummer et al., 2006). The chains usually converged after less than 15,000–283 

17,000 iterations. After convergence, we ran an updating stage of 5,000 iterations, and a final 284 

burn-in stage of 3,000 iterations. Finally, we kept 1,000 parameter sets for following simulations 285 



15 

 

by thinning the last 3,000 iterations from all of the six chains (i.e., 167 per chain) to eliminate the 286 

autocorrelation of estimates among iterations.  287 

   Once the models were fitted, we examined the model performance via a series of inter-288 

comparison between the predicted FCO2 (FCO2.model) and observed/gap-filled FCO2 289 

(FCO2.obs/FCO2.fill). First, we used a simple linear regression to compare the half-hourly FCO2.model 290 

against FCO2.obs for each year. The comparison was also done for the daily and eight-day FCO2.model 291 

against FCO2.fill for each year. The temporal scales were selected to target the two dominant 292 

characteristic scales in the FCO2 time series (i.e., daily–synoptic and seasonal–annual scales) 293 

(Baldocchi et al., 2001; Desai, 2010; Ouyang et al., 2014). The comparison of FCO2.model and 294 

FCO2.fill was made only for those periods that had less than 50% of gap-filled data. The model 295 

error statistics provided an estimate of the unexplained variation by our models, which resulted 296 

from the uncertainties both in the EC measurements and model parameterization. Second, we 297 

examined the agreement between FCO2.model and FCO2.fill at different times and timescales via 298 

wavelet coherence (Grinsted et al., 2004; Stoy et al., 2013). The “biwavelet” package was 299 

adopted to calculate the wavelet coherence across a wide range of scales (20–213 hours) (Gouhier, 300 

2014). Following Grinsted et al. (2004), we interpreted the coherence as an estimate of 301 

correlation between two time series across times and timescales and the coherence threshold was 302 

set as 0.7 for determining the significance (i.e., >0.7 as significant coherence).  303 

   304 

3. Results  305 

3.1. Model Diagnostics and Error Statistics 306 

The modeled FCO2 showed significant wavelet coherence against the observed FCO2 at the half-307 

daily to daily scale (~23–25 hours) during the growing season and at the annual scale (~212–213 308 
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hours) through the study period at all the sites (Fig. 1). There was a longer data gap (~16 days) at 309 

the marsh site in the 2012 fall, during which the modeled FCO2 deviated unmistakably from the 310 

MDS-filled FCO2 (Fig. 1c). Outside this long-gap event, the simulated FCO2 showed significant 311 

wavelet coherence against the observed FCO2 at the multi-daily to monthly scales (~27–210 hours) 312 

at all the sites. The inter-comparison of observed/gap-filled and modeled FCO2 had slopes ranging 313 

between 1.00–1.03, 0.99–1.05, and 0.97–1.08 at the half-hourly, daily, and eight-day scales 314 

(Table A.5), suggesting that the model was generally robust and unbiased in duplicating the FCO2 315 

variability across the target scales at all sites.  316 

The simulated FCO2 generally replicated the interannual variability that was compatible 317 

with the gap-filled FCO2 at all sites (Fig. A.2). Noticeably, the simulated annual FCO2 deviated 318 

from the gap-filled annual FCO2 in terms of the absolute magnitudes. For the woodland and 319 

cropland sites, the net annual CO2 uptake was consistently higher from model simulation than 320 

gap-filling (~22% and ~11%, respectively). We found the difference of cumulative FCO2 occurred 321 

mostly in the non-growing seasons and was generally negligible in the growing seasons (Fig. 1; 322 

Fig. A.2). The deviations resulted mostly from a few high FCO2 pulse events that were likely 323 

associated with intermittent nighttime turbulence, CO2 outbursts after snow meltdown/ice 324 

breakup, or pulsing CO2 release after rainfalls (at the marsh). As our current model was not 325 

designed to incorporate these intermittent events (either drivers or model structures), our model 326 

failed to reproduce these pulsing patterns and thus led to underestimation of cumulative FCO2 in 327 

the non-growing seasons. However, our model simulation still succeeded in replicating the 328 

interannual variability of the annual FCO2, which was largely determined by the interannual 329 

variability of growing season FCO2. Thus, we argued that the model framework was suitable and 330 

robust for our current research purpose. The standard deviations of annual FCO2 were compatible 331 
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between the gap-filled and simulated data, ranging between 51–61, 79–84, and 86–87 g C m−2 332 

yr−1 at the woodland, cropland, and marsh sites, respectively.  333 

 334 

Fig. 1. Wavelet coherence between the observed (gap-filled) and modeled net ecosystem CO2 335 

exchanges (FCO2) along the time and timescale (period) axes. The colorbar denotes the wavelet 336 

coherence and the coherence threshold is set as 0.7 for determining the significance (i.e., >0.7 as 337 

significant coherence). The dashed lines indicate the cones of influence beyond which the 338 

wavelet coherence should not be interpreted. (For interpretation of the references to color in this 339 

figure legend, the reader is referred to the web version of the article.)  340 
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3.2. Functional Parameters  341 

Our models adequately mimicked the multi-scaled nature (multi-daily, seasonal, and interannual 342 

variability) of our target functional parameters—Rref and Amax (Fig. 2; Fig. 3). That allowed us to 343 

detect the interannual difference of ensemble phonological characteristics, such as the annual 344 

integrals and timing of active/peak growing periods (Fig. 2a, c, e; Fig. 3a, c, e; Fig. A.3), while 345 

still preserving the information of short-term dynamics (Fig. 2b, d, f; Fig. 3b, d, f). The estimated 346 

Amax and Rref were significantly correlated with EVI (Cor: 0.62–0.97) (Fig. A.4), suggesting that 347 

their seasonal dynamics were largely associated with the ecosystem vegetation greenness.  348 

At the woodland site, the warm year of 2012 had the longest peak assimilation periods of 349 

125 days whereas 2011 and 2013 had 90 and 103 days, respectively, and led to the highest annual 350 

assimilation potential among the three years (Fig. 2a; Fig. A.3). The earlier onset of the 351 

assimilation period in 2012 was largely associated with higher soil temperature (Fig. A.4a). At 352 

the marsh site, the seasonal dynamics of Amax varied only marginally between 2011 and 2012 353 

(Fig. 2e; Fig. A.3a, c). The shortest duration of assimilation period (5–13 days shorter) and the 354 

lowest annual assimilation potential (29–33% lower) at the marsh were observed in 2013 (Fig. 355 

A.3a, c). The cool summer of 2013 led to the lowest peak Amax (~20 	mol m−2 s−1) and the 356 

senescence period started around 11–16 days earlier than in 2011 and 2012 (Fig. 2e; Fig. A.3c). 357 

Noticeably, the dependence of Amax on soil temperature in 2013 deviated from that in 2011 and 358 

2012 (Fig. A.4i), suggesting that the early fall senescence in 2013 was influenced by other 359 

factors (e.g., chilling damage).  360 

As expected, Amax at the cropland site varied greatly over the years (Fig. 2c, d) and the 361 

recovery and senescence of Amax did not follow closely with soil temperature (Fig. A.4e). This 362 

suggested that the GEP phenology was largely influenced by agricultural management, such as 363 
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crop types and plantation/harvest schedules. Considering only the periods with soybean cover, 364 

the peak Amax, assimilation potentials and duration of active and peak assimilation periods varied 365 

only marginally between 2011 and 2012 (Fig. 2c; Fig. A.3a, c).      366 

The ensemble characteristics of ER phenology, such as the peak Rref and length of the 367 

active and peak respiration periods, also varied markedly over the years (Fig. 3; Fig. A.3b, d). 368 

The duration of peak respiration periods generally coincided with the peak assimilation periods 369 

at each site (Fig. A.3c, d). This suggested that GEP and ER phenology were generally 370 

synchronized in time. As expected, the woodland site had the longest active/peak respiration 371 

periods and the highest annual respiration potential in 2012. To our surprise, the annual 372 

respiration potential was not significantly higher in 2012 at the cropland site. Also, the annual 373 

respiration potential was not significantly lower in 2013 at the marsh site. As such, the 374 

magnitudes of GEP and ER phenology (e.g., annual potentials, peak values) may not change 375 

consistently nor respond evenly to interannual climatic variability. 376 

Yearly parameters (i.e., E0, Km) also varied slightly between years (Table 2). However, 377 

the difference needs to be interpreted with care. As stated earlier, these parameters tended to co-378 

vary with Amax or Rref. Therefore, treating them as separate and independent estimates may risk 379 

over-interpretation. For example, different E0 was estimated among years at all the sites. This 380 

interannual difference, however, coincided with the interannual difference of peak Rref (Fig. 3; 381 

Table 2). Hereafter, we treat parameters obtained from each year and each model as a set that 382 

represented the comprehensive functional status of GEP or ER for each year (e.g., 2011 383 

parameter). The parameters from each year were used together running the cross-year model 384 

simulation and the effects of different environmental drivers in each year were not further 385 

partitioned in the study.  386 
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 387 

Fig. 2. Time series of the daily maximum ecosystem CO2 uptake rate at light saturation (Amax), 388 

including (a, c, e) the mean estimates (μAmax) and (b, d, f) the means with random errors 389 

(μAmax+σAmax). Light colored lines represent the 95% posterior quantile intervals. (For 390 

interpretation of the references to color in this figure legend, the reader is referred to the web 391 

version of the article.)  392 
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 393 

Fig. 3. Time series of the daily reference respiration (Rref), including (a, c, e) the mean estimates 394 

(μRref) and (b, d, f) the means with random errors (μRref+σrref). Light-colored lines represent the 395 

95% posterior quantile intervals. (For interpretation of the references to color in this figure 396 

legend, the reader is referred to the web version of the article.)  397 
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Table 2. Medians and 95% quantile intervals (2.5%, 97.5%) of the posterior distributions and the 

lower and upper bounds [lower, upper] of the uniform prior distributions of model parameters at 

the woodland, marsh, and cropland sitesa  

Parameter Posterior  Prior 

2011 2012 2013 Hyper parameter 

Woodland site 

E0 232 (232,261) 58 (50,77) 52 (50,58) [50,400] 

Km 1330 (1237,1424) 1762 (1644,1896) 1822 (1666,1968) [100,2000] 

kVWC  0.67 (0.46,0.88)  [0,10] 

VWC0  0.55 (0.47,0.63)  [0,10] 

kVPD  0.82 (0.77,0.87)  [0,10] 

VPD0  0.18 (0.17,0.20)  [0,10] 

Marsh site  

E0 178 (160,196) 86 (68,105) 91 (71,109) [50,400] 

Km 662 (607,718) 690 (619,760) 430 (383,483) [100,2000] 

kVWC  n.a.  [0,10] 

VWC0  n.a.  [0,10] 

kVPD  0.42 (0.15,0.76)  [0,10] 

VPD0  0.45 (0.23,0.53)  [0,10] 

Cropland site  

E0 205 (181,229) 186 (162,210) 76 (55,102)b [50,400] 

Km 1316 (1237,1391) 1184 (1111,1246) 1533 (1459,1612)b [100,2000] 

kVWC 0.78 (0.09,8.30) 0.91 (0.29,8.63)b [0,10] 

VWC0 0.32 (0.01,0.74) 0.76 (0.04,0.92)b [0,10] 

kVPD 1.23 (1.17,1.29) 0.89 (0.79,0.98)b [0,10] 

VPD0 0.09 (0.07,0.10) 0.06 (0.03,0.07)b [0,10] 
aE0: temperature sensitivity (°C); Km: half-saturation quantum flux level of the GEP light 

response curve (μmol quanta m–2 s–1); kVPD: sensitivity for vapor pressure deficit (VPD) 

limitation; kVWC: sensitivity for soil water content (VWC) limitation; VPD0: threshold for VPD 

limitation; VWC0: thresholds for VWC limitation; n.a.: not available.  
bFor wheat period (September 2012−2013). 

 398 

3.3. Direct and Indirect Effects on Variability of Local Eight-Day GEP, ER, and FCO2 399 

Both direct and indirect effects explained a substantial portion of the local eight-day variation of 400 

GEP, ER, and FCO2 over the years (Fig. 4; Fig. 5; Fig. 6). Additionally, their relative contribution 401 

(either in direction or in magnitude) varied substantially through time and among sites. Briefly, 402 

the local variability of GEP, ER, and FCO2 at the cropland was dominantly driven by the indirect 403 

effects (Fig. 4), reflecting largely the year-to-year difference in the crop plantation and harvest 404 
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schedules. The growing periods at the cropland site were relatively short, where Amax and Rref 405 

varied drastically and rapidly. Thus, any change in the planting schedule and/or crop types 406 

produced a substantial difference in the local eight-day GEP, ER, and FCO2 over the years (up to 407 

±80, ±30, and ±60 g C m−2 8d−1). Woodland and marsh sites, in contrast, had relatively smaller 408 

local eight-day variability over the years that was generally bounded within ±20 and ±15 g C m−2 409 

8d−1 (Fig. 5; Fig. 6).  410 

The warm spells in spring and summer in 2011 and 2012 affected the local variability of 411 

GEP, ER, and FCO2 mainly through the indirect effects that triggered the shifts of growing periods 412 

over the years (Fig. 4; Fig. 5; Fig. 6; Fig. A.1). There were direct effects on ER that were caused 413 

by warm air temperature, but the effects were marginal and generally less than ~10 g C m−2 8d−1 414 

at all the sites. The woodland site had ~70 and ~30 g C m−2 higher GEP modulated by the 415 

indirect effect in the early and late growing periods (DOY 121–153 and 257–281) in 2012 (Fig. 416 

5a). On the other hand, the relatively drier atmosphere (higher VPD) in the late summer (DOY 417 

217–241) in 2012 led to ~28 g C m−2 lower GEP through the direct effect (Fig. 5a; Fig. A.1c). As 418 

ER was only slightly higher in the growing period in 2012 (~6 g C m−2), the net CO2 uptake 419 

increased ~81 g C m−2 at the woodland site (Fig. 5c). Similarly, the marsh site had marginally 420 

higher GEP in 2012 as a consequence of indirect effects (Fig. 6a). As GEP was less limited by 421 

the dry atmosphere at the marsh site than the woodland site, the direct effect, in contrast, 422 

enhanced the marsh GEP as a result of higher PAR in the relatively rainless summer of 2012 423 

(Fig. 6a; Fig. A.1a, b, c). In total, the marsh site had ~48 and ~22 g C m−2 higher GEP caused by 424 

the direct and indirect effects in the growing period of 2012. In contrast to the woodland site, the 425 

marsh site had higher ER in the growing period of 2012 mostly resulting from the indirect effect 426 

(~25 g C m−2). Consequently, the net CO2 uptake increased by ~29 g C m−2 at the marsh site in 427 



24 

 

the growing period of 2012 (Fig. 6c).                428 

The late summer cool spells of 2013 (DOY 208-239) posed a substantial and opposite 429 

effect on CO2 fluxes at the woodland and marsh sites (Fig. 5; Fig. 6). At the woodland site, the 430 

32-day cumulative CO2 uptake was ~17 g C m−2 higher in 2013 than the three-year average (Fig. 431 

5c). The enhanced CO2 uptake was largely attributed to lower ER (~38 g C m−2) modulated by 432 

the indirect effects (Fig. 5b). The indirect and direct effects on GEP compensated each other to a 433 

large extent and led to only a ~20 g C m−2 decrease in GEP. The marsh site, in contrast, had a 434 

lower net CO2 uptake during the cool summer period of 2013 of ~11 g C m−2 below the three-435 

year average (Fig. 6a). Remarkably, the reduction of CO2 uptake lasted much longer than the 436 

duration of the cool event until the end of growing period (~DOY 272). In total, the net CO2 437 

uptake was ~42 g C m−2 lower from DOY 240 to the end of growing period in 2013 in 438 

comparison with the three-year average. This lower CO2 uptake was dominantly driven by the 439 

indirect effect on GEP (~51 g C m−2, Fig. 6c) while ER was generally compatible comparing to 440 

2011 and 2012.   441 
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 442 

Fig. 4. The effects of year-to-year variation in environmental drivers and model parameters on 443 

modeled (a) gross ecosystem production (ΔGEP), (b) ecosystem respiration (ΔER), and (c) net 444 

ecosystem CO2 exchange (ΔFCO2) at the cropland site. Variation of each eight-day integrated 445 

fluxes over the years was partitioned into effects of environmental drivers (direct effect) and 446 

model parameters (indirect effect). The baseline (i.e., 0) was set as the average of nine-scenario 447 

simulations in each eight-day period. The sign convention is that a positive effect on ER and 448 

GEP increases the respiration loss and assimilation uptake whereas a negative effect on FCO2 449 

increases the net ecosystem CO2 uptake. Cumulative effects were calculated starting from the 450 

first day of each year. Vertical segments indicate the 95% quantile intervals of model simulation. 451 

Black and grey blocks indicate the duration of climate anomaly events (warm and cool spells) 452 

similar to Fig. A.1a.    453 
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 454 

Fig. 5. The effects of year-to-year variation in environmental drivers and model parameters on 455 

modeled (a) gross ecosystem production (ΔGEP), (b) ecosystem respiration (ΔER), and (c) net 456 

ecosystem CO2 exchange (ΔFCO2) at the woodland site. Variation of each eight-day integrated 457 

fluxes over the years was partitioned into effects of environmental drivers (direct effect) and 458 

model parameters (indirect effect). The baseline (i.e., 0) was set as the average of nine-scenario 459 

simulations in each eight-day period. The sign convention is that a positive effect on ER and 460 

GEP increases the respiration loss and assimilation uptake whereas a negative effect on FCO2 461 

increases the net ecosystem CO2 uptake. Cumulative effects were calculated starting from the 462 

first day of each year. Vertical segments indicate the 95% quantile intervals of model simulation. 463 

Black and grey blocks indicate the duration of climate anomaly events (warm and cool spells) 464 

similar to Fig. A.1a.  465 
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 466 

Fig. 6. The effects of year-to-year variation in environmental drivers and model parameters on 467 

modeled (a) gross ecosystem production (ΔGEP), (b) ecosystem respiration (ΔER), and (c) net 468 

ecosystem CO2 exchange (ΔFCO2) at the marsh site. Variation of each eight-day integrated fluxes 469 

over the years was partitioned into effects of environmental drivers (direct effect) and model 470 

parameters (indirect effect). The baseline (i.e., 0) was set as the average of nine-scenario 471 

simulations in each eight-day period. The sign convention is that a positive effect on ER and 472 

GEP increases the respiration loss and assimilation uptake whereas a negative effect on FCO2 473 

increases the net ecosystem CO2 uptake. Cumulative effects were calculated starting from the 474 

first day of each year. Vertical segments indicate the 95% quantile intervals of model simulation. 475 

Black and grey blocks indicate the duration of climate anomaly events (warm and cool spells) 476 

similar to Fig. A.1a.  477 
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3.4. Direct and Indirect Effects on Variability of Annual GEP, ER, and FCO2 478 

Indirect effects generally explained a substantial portion of the interannual variability in annual 479 

GEP, ER, and FCO2 at all the sites (Fig. 7). However, the relative contribution of direct and 480 

indirect effects varied among different CO2 fluxes and sites. Noticeably, a large portion of the 481 

local eight-day variability at the cropland was compensated over time while integrating into 482 

annual integrals (Fig. 4; Fig. 7c). Despite the absolute magnitudes of annual FCO2 differed 483 

evidently from around −500 and −300 g C m−2 yr−1 at the woodland and cropland to near 0 g C 484 

m−2 yr−1 at the marsh, the interannual variability was surprisingly compatible and within 61–86 485 

(SD) g C m−2 yr−1 at all the sites (Fig. 7a, c, e). 486 

The interannual variation of annual FCO2 was mainly driven by the varying parameters 487 

over the years, accounting for 54%, 89%, and 86% of the variation at the woodland, cropland, 488 

and marsh sites, respectively. Such indirect effects translated to ±85, ±110, and ±85 g C m−2 yr−1 489 

year-to-year difference in the annual FCO2 (Fig. 7b, d, f). On the other hand, the varying climate 490 

conditions over the years accounted for 33% of the interannual FCO2 variation at the woodland 491 

site and became irrelevant (<10%) at the cropland and marsh sites. Such direct effects led to ±70, 492 

±16, and ±28 g C m−2 yr−1 year-to-year difference in the annual FCO2 at the woodland, cropland, 493 

and marsh sites, respectively. At all the sites, the interannual variation of GEP was dominantly 494 

driven by indirect effects, which accounted for 79–91% of interannual variation (i.e., ±96–±175 495 

g C m−2 yr−1 year-to-year difference). For ER, indirect effects dominated the interannual 496 

variation at the woodland and cropland sites (91% and 90%) while accounting for only 51% of 497 

the interannual variation at the marsh site.  498 

The indirect effects on annual GEP and ER generally varied in the same directions over 499 

the years (Fig. 7b, d, f; Fig. A.5e; Cor: 0.72). That means, the increase of annual GEP induced by 500 
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indirect effects was usually accompanied by the increase of annual ER also induced by indirect 501 

effects. We did not find similar co-varying patterns in the direct effects on annual GEP and ER, 502 

or between the direct and indirect effects on all fluxes (Fig. A5b, c, d, f; Cor: −0.45-0.35). In 503 

sum, GEP and ER—the two large and opposite fluxes that determine the annual net CO2 uptake, 504 

tend to co-vary over the years and sites. Such co-varying pattern is mostly driven by the 505 

synchronous changes (in directions) of indirect effects on GEP and ER. Consequently, the 506 

interannual variability of annual FCO2 is surprisingly conservative and compatible among all the 507 

sites.     508 
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 509 

Fig. 7. Annual cumulative net ecosystem CO2 exchange (FCO2) (a, c, e) and the effects of 510 

environmental drivers (climate year) and model parameters (parameter year) (b, d, f) on annual 511 

FCO2 (ΔFCO2), gross ecosystem production (ΔGEP), and ecosystem respiration (ΔER). The 512 

baseline FCO2 was obtained from the average of nine-scenario simulations at each site (Fig. 7a, c, 513 

e) and then used as the reference level (i.e., 0) in presenting the direct and indirect effects in Fig. 514 

7b, d, f. The sign convention in Fig. 7b, d, f is that a positive effect on ER and GEP increases the 515 

respiration loss and assimilation uptake whereas a negative effect on FCO2 increases the net 516 

ecosystem CO2 uptake. The effects that are caused by the interactions between the climate and 517 

parameter years are generally minor and are not presented here. Vertical segments in Fig. 7b, d, f 518 

showed the 95% quantile intervals of model simulation.  519 
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4. Discussion 520 

4.1. Direct Climatic and Indirect Parameter Effects 521 

Our findings reiterate the important roles of functional changes in driving the interannual FCO2 522 

variability (i.e., indirect effect). Most importantly, the relative contribution of indirect effects 523 

could differ distinctly among sites, which leads to the cross-site difference of interannual FCO2 524 

variability. While several studies have attempted to address the similar research questions (Hui et 525 

al., 2003; Polley et al., 2008; Richardson et al., 2007; Shao et al., 2014; Teklemariam et al., 2010; 526 

Wu et al., 2012), very few of them were conducted using such a cluster-wise experiment design. 527 

Thus, previous studies often constrained their scopes on either the long-term variability in one 528 

single site (e.g., Richardson et al., 2007; Wu et al., 2012) or a generalized overview of multiple 529 

sites from diverse climate zones and geo-locations (e.g., Shao et al., 2014; Shao et al., 2015). 530 

Often, those multi-site studies had to ignore the details of site-specific climatic conditions and 531 

the comparisons were carried out on simple metrics derived at the annual to interannual scales. 532 

The discrepancy in model structures further limited the capability in interpreting the varied 533 

results among studies.  534 

In our case, we were able to partition the interannual variation at both the local and 535 

annual scales and examine the partitioned effects through times and across sites. Our study 536 

clearly showed that different ecosystems responded differently to such similar climatic forcing. 537 

The interannual FCO2 variability was larger (79 and 86 g C m−2 yr−1) and dominated by indirect 538 

effects (89% and 86%) at the cropland and marsh sites. On the other hand, the interannual FCO2 539 

variability and indirect effect were marginally lower at the woodland site (61 g C m−2 yr−1 and 540 

54%). Our findings concurred with the proposition in Shao et al. (2015) that the cross-site 541 

difference of interannual FCO2 variability was largely determined by the difference of indirect 542 
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effects among sites.  543 

To date, there is no consensus of what leads to the difference of the contribution of 544 

indirect effects across sites. We argue that the histories and regimes (e.g., intensity, frequency) of 545 

natural and human disturbance may explain at least a portion of the cross-site difference. Polley 546 

et al. (2008) examined the interannual FCO2 variability at two nearby prairie sites with different 547 

grazing management (grazed vs. ungrazed). They found that grazing management reduced the 548 

influence of plants on ecosystem carbon processes. For example, it reduced the FCO2 variability 549 

generated by plant physiological and phenological changes and it altered the most relevant 550 

environmental drivers in explaining the FCO2 variability. A similar conclusion was made in 551 

McVeigh et al. (2014) and Teklemariam et al. (2010), where ecosystems mediated the response 552 

of CO2 fluxes to climatic variability through a different degree of structural and functional 553 

modification in the dominant vegetation. Teklemariam et al. (2010) argued that the difference 554 

among ecosystems may be attributed to their different histories of natural and human 555 

disturbance. The interannual FCO2 variability tends to be mainly driven by external environmental 556 

variability in ecosystems that adjust to prolonged exposure of a given environmental condition, 557 

such as the 70-year-old woodland in our study. In contrast, ecosystems that are prone to frequent 558 

disturbance and management, such as the cropland in our case, tend to have the interannual FCO2 559 

variability mainly driven by indirect effects. 560 

Further research should focus on generating a suitable framework to better quantify the 561 

effects of the disturbance history and regime. Shao et al. (2015) argued that higher disturbance 562 

intensity may not always lead to higher contribution of indirect effects. Different disturbance 563 

regimes may also influence the interplay of direct and indirect effects. Currently, the data are still 564 

insufficient to draw a general conclusion about the influence of disturbance regimes. Further 565 
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studies with a more sophisticated design (e.g., paired or cluster-wise sites) are required in order 566 

to disentangle the explicit roles of disturbance regimes.   567 

While the importance of indirect (or biotic/parameter) effects on interannual FCO2 568 

variability has been discussed in several studies (Hui et al., 2003; Polley et al., 2008; Richardson 569 

et al., 2007; Shao et al., 2014; Teklemariam et al., 2010; Wu et al., 2012), challenges remain in 570 

synthesizing these reports and interpreting the indirect effects. Extra caution is required because 571 

different statistical models are adopted in partitioning the direct/indirect effects. Those models 572 

are fundamentally different in their structure and/or statistical assumptions. Thus, the different 573 

partitioned variation among reports reflects to an unknown extent the inherent model differences 574 

(Shao et al., 2015; Wu et al., 2012). Potentially, the indirect effects involve the changes of 575 

structural, physiological, and phenological traits of ecosystems (Humphreys and Lafleur, 2011; 576 

Luo et al., 2001; Richardson et al., 2010). Different models may or may not be capable of 577 

replicating the variation as induced by all those changes.  578 

Additionally, unaccounted environmental drivers or prolonged and lagged effects that 579 

were not incorporated in the model structure may also contribute to the indirect effects (Ciais et 580 

al., 2005; Desai, 2014). Contrary to other studies (Baldocchi et al., 2005; Richardson et al., 581 

2007), we did not use soil temperature as a predictor variable in modeling the spring recovery 582 

and fall senescence of GEP and ER. By incorporating soil temperature, a portion of the current 583 

indirect effects at the woodland and marsh sites could be partitioned into the direct effects of soil 584 

temperature (Fig. A.4). Interestingly, the strong relationship between the EVI and Amax/Rref 585 

suggested a potential avenue for further model improvement. Currently, challenges remain in 586 

adequately incorporating these snap-shot/satellite-based vegetation indices (e.g., every 8 to 16 587 

days) into our model framework. We suggest future studies should incorporate near-surface 588 
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continuous phenological measurements (e.g., radiometric sensors, digital cameras) (Ryu et al., 589 

2012; Soudani et al., 2012; Toomey et al., 2015). Thus, the changes in plant phenology can be 590 

directly incorporated as predictor variables and the phenological effects can be distinguished 591 

from the current indirect effects.        592 

 593 

4.2. Influence of Climatic Variability and Anomaly  594 

Recent climatic variability and anomalies in the Great Lakes region provided us a rare and 595 

valuable opportunity to examine the interannual FCO2 variability across different ecosystems. 596 

With these record-breaking climate anomalies, we were able to examine how ecosystem carbon 597 

processes may respond to the extreme and contrasting climatic conditions (e.g., wet-dry, warm-598 

cool) in a relative short time span (~3 years). Most importantly, the similar climatic variability 599 

across the region allowed us to closely and simultaneously examine the response of FCO2 600 

variability in different ecosystems. In general, the year-to-year changes of GEP and ER 601 

correlated positively with each other when pooling all the site-year data (i.e., high annual GEP 602 

with high annual ER) (Cor: 0.73; Fig. A.5a). The positive correlation is of great importance 603 

because it implies that year-to-year variation of GEP and ER partly compensate each other, 604 

which dampens the interannual variability of FCO2 (Baldocchi, 2008). The year-to-year changes 605 

of GEP and ER did not synchronize across sites (to be discussed below), suggesting that different 606 

ecosystems responded differently to similar climate conditions in a specific year. We did not find 607 

evident correlations between the direct and indirect effects as reported in Shao et al. (2014) (Fig. 608 

A.5b, d, f). This lack of correlation suggests that ecosystem functional changes may not always 609 

compensate or supplement the direct/instantaneous effects driven by environmental forcing 610 

(neither synergistically nor antagonistically) (Richardson et al., 2007; Shao et al., 2014). 611 

Both the woodland and cropland sites had the highest net CO2 uptake in the warm year of 612 
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2012 mainly because of longer peak assimilation periods and higher assimilation potentials. The 613 

marsh, in contrast, had lower net CO2 uptake in 2012 than in 2011 because the increase of ER 614 

exceeded the increase of GEP. Contrasting effects of an earlier warm spring on net annual CO2 615 

uptakes were reported in several studies across a diverse range of ecosystems in boreal and 616 

temperate regions (e.g., Hu et al., 2010; Kross et al., 2014; Lafleur and Humphreys, 2008; 617 

Richardson et al., 2009; Richardson et al., 2010). At the woodland site, the warm temperature in 618 

2012 had the most influence through triggering earlier onsets of active/peak assimilation periods 619 

and leading to higher annual assimilation potentials. Similar findings were reported in previous 620 

studies showing that warm springs tend to enhance GEP more than ER in forest ecosystems 621 

(Black et al., 2000; Richardson et al., 2010).  622 

On the other hand, the net CO2 uptake in wetlands may not always benefit from a warmer 623 

climate condition (Sulman et al., 2010). As wetlands often accumulate a substantial amount of 624 

carbon from allochthonous and autochthonous sources, the increase of ER may exceed the 625 

increase of GEP during the warm years when more labile carbon becomes available for 626 

decomposition as a consequence of a relatively lower water table (Chu et al., 2015; Lafleur et al., 627 

2003). Similarly, the effects of the warm spring on CO2 uptake in croplands are less clear 628 

because the planting schedule is often determined based on more than just one single factor (i.e., 629 

soil temperature). In our case, both the warm temperature and relatively low precipitation during 630 

April–May (and thus adequate soil water status) in the 2012 spring provided favorable conditions 631 

for early cultivation. Thus, soybeans were planted ~20 days earlier in 2012 than that in 2011, 632 

when frequent precipitation led to near-saturated soil water content postponing the cultivation 633 

schedule.  634 

The cool spells in the 2013 summer influenced the marsh CO2 uptake via reducing the 635 
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assimilation potential and GEP. The woodland site, in contrast, had slightly higher annual CO2 636 

uptake than the three-year average as a consequence of reduced ER. We found that the cool 637 

events triggered early senescence and caused the peak assimilation period to end much earlier in 638 

2013 at the marsh than in 2011 or 2012. The mechanisms of the cool-spell effects remain unclear 639 

and have not been reported in previous wetland studies. In general, lower temperature led to 640 

earlier senescence, which explained a large portion of the observed lower GEP. However, we 641 

found that the response curves of Amax and Rref against soil temperature in 2013 deviated from 642 

those in 2011 or 2012, suggesting that other factors (e.g., chilling damage) may also play an 643 

important role.  644 

 645 

5. Conclusions 646 

With only three years of data, we are cautious about drawing a generalized conclusion about the 647 

interannual variability and long-term baseline of CO2 fluxes at the three ecosystems. However, 648 

the simultaneous CO2 flux observation at multiple ecosystems that experienced similar climate 649 

variability and anomaly certainly provide valuable insights in how contrasting ecosystems may 650 

respond to similar environmental forcing. The positive correlation between the year-to-year 651 

changes of GEP and ER suggests that GEP and ER generally compensate each other to a large 652 

extent, leading to a decrease in the climate sensitivity of interannual FCO2. Such co-varying GEP-653 

ER pattern is largely driven by nearly synchronous changes in the indirect effects of GEP and 654 

ER. Thus, even when climate conditions vary drastically in our three-year study period, the 655 

variability of the annual FCO2 (SD: 61–86 g C m−2 yr−1) is still conservative and within the 656 

reported ranges from cross-site/cross-year synthesis.  657 

Our findings also highlight that changes in functional parameters (e.g., Amax, Rref) over 658 
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the years play an important role in driving the interannual FCO2 variability (54–89%) at all the 659 

sites. The year-to-year changes of GEP/ER did not synchronize across sites. Consequently, 660 

different ecosystems may respond differently to similar climatic conditions in a specific year in 661 

terms of annual net CO2 uptakes. While the warm temperature in the spring of 2012 triggered the 662 

growing season in the woodland site to start earlier and substantially increased the annual CO2 663 

uptakes, similar conditions turned the marsh to near CO2 neutral because of enhanced ER. 664 

Similarly, the cool spell in the summer of 2013 also influenced GEP and ER differently in 665 

different ecosystems that responded oppositely in their annual CO2 uptake. Future research 666 

should focus on the unequal response among ecosystems to similar climatic variability in order 667 

to better predict, upscale, and assess the potential impacts of future climate change. 668 



38 

 

Acknowledgements 669 

This project was funded by the National Oceanic and Atmospheric Administration (NOAA) 670 

(NA10OAR4170224), USA. We thank John Simpson and the Winous Point Marsh Conservancy 671 

for supporting the research platform at the Winous Point North Marsh and Walter Berger for 672 

providing his cropland and helping with the infrastructure construction. Tim Schetter, Karen 673 

Menard, Russ Maneval, and the Metroparks of the Toledo Area allowed us access to the Oak 674 

Openings Preserve Park and offered logistical support. Ge Sun and Richard Becker gave helpful 675 

advice. We gratefully acknowledge Mike Deal, Jianye Xu, Changliang Shao, Yahn-Jauh Su, Jing 676 

Xie, Jennifer Teeple, Terenzio Zenone, Michael Abraha, Wei Shen, Angela Fan, Xiaosong Zhang, 677 

and Susie Wu for building and maintaining the site infrastructure and assisting with data 678 

management. We also thank Gabriela Shirkey for editing the manuscript.  679 



39 

 

Appendix A. Implications of the Modeling Approach 680 

Our attempts to utilize a structurally simple and flexible Bayesian hierarchical model provide 681 

insights into future ER-GEP modeling. First, the observed time series of FCO2 is often composed 682 

of processes at multiple temporal scales (e.g., hourly, diurnal, synoptic, seasonal, interannual) 683 

(Baldocchi et al., 2001; Ouyang et al., 2014; Stoy et al., 2005). The superimposed characteristics 684 

pose challenges in constructing a suitable model that can duplicate and predict the carbon fluxes 685 

across a wide range of temporal scales (Desai, 2014). Often, the time series has to be divided and 686 

grouped according to the target scales (e.g., by year, by season) and fitted with separate sets of 687 

model parameters. In this case, the groups are treated independently and the unaccounted 688 

linkages among groups (e.g., among years, among seasons) often require extra works and caution 689 

in interpreting the modeling results.  690 

The Bayesian hierarchical model takes advantages of linking the yearly parameters 691 

through higher level distributions (i.e., global) such that the year-to-year variation can be 692 

adequately described in the model structures and the overall estimate can be improved via 693 

sharing the information among years (Efron and Morris, 1977). Additionally, the seasonal and 694 

short-term (e.g., multi-daily or synoptic) dynamics of Amax and Rref can be adequately described 695 

by using the prescribed empirical functions and random error structures. In our preliminary tests, 696 

we ran an additional model estimation by setting Amax and Rref as a random-walk process, where 697 

Amax and Rref were allowed to vary everyday through the time series while all other model 698 

structures were kept the same. We found that the random-walk model approach generated very 699 

similar seasonal and multi-daily dynamics in Amax and Rref comparing to our current model (data 700 

not shown). This suggests that the current model structure was flexible and sufficient to capture 701 

the multi-scaled dynamics of CO2 fluxes. 702 
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Second, the empirical phenological model we adopted provided an alternative approach 703 

in quantifying the GEP/ER phenology and thus in simulating the seasonality of CO2 fluxes. 704 

Despite the fact that different equations were adopted, several previous studies have 705 

demonstrated that the phenological modeling approach was informative, practical, and flexible 706 

(e.g., Gu et al., 2003; Gu et al., 2009; Klosterman et al., 2014; Noormets et al., 2009; Toomey et 707 

al., 2015). Once these models were estimated, the first and second derivate could be calculated 708 

and a series of informative phenological indices could be determined along with properly-709 

defined uncertainty intervals (e.g., Fig. A.3). These mathematical characteristics make it feasible 710 

to draw statistical inference from the cross-site or cross-year comparison (Noormets et al., 2009).  711 

It was also noticeable that most previous studies used daily maxima or integrals while 712 

fitting the phenological models (Gu et al., 2003; Gu et al., 2009; Noormets et al., 2009). We 713 

showed that our Bayesian hierarchical model could serve as an alternative approach in estimating 714 

the phenological indices. By using the half-hourly FCO2 directly, such approach reduces the 715 

uncertainties that potentially originate from the gap-filling and/or GEP-ER partitioning 716 

procedures. Also, the short-term effects of environmental forcing, such as PAR/VPD on GEP and 717 

Ta/VWC on ER, can be explicitly incorporated into models. This helps eliminate the effects of 718 

short-term environmental forcing and provides better estimates of the potential GEP and ER.  719 
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